

 $(2.0_{max})^2 = (2.3.r_a)^2.2$ $\begin{aligned} \mathcal{L}_{t} \cdot \mathcal{O}_{max}^{\ \ 2} &= (6 \cdot v_{a})^{2} \cdot 2 \\ 2 \cdot \mathcal{O}_{max}^{\ \ 2} &= 6^{2} \cdot v_{a}^{2} \end{aligned} |:2$ $2 \cdot 72 V^2 = 36 \cdot ra^2 \quad [:36]$ $2 \cdot 2V^2 = ra^2 I = T^2$ 2V = ra

We want U_max as the distance to the outermost points (0011, 0000, 1100, 1111) because this allows us to send data with the highest possible voltage, resulting an better SNR.

TASK 2 A

TASK 2 B

$$R_{T} = 502$$

$$r_{T} = 502$$

$$r_{T} = 1752$$

$$r_{T} = 502$$

TASK 3 A

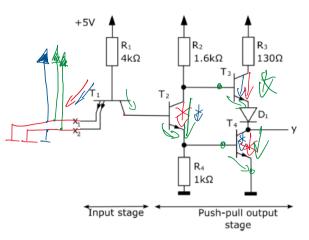


Figure 3.1: standard TTL output driver

x_1	x_2	T_1	T_2	T_3	T_4	y
Low	Low High	СОЦ. СОЦ.	NON-CON. NON-CON.	con.	NON-CON. NON·CUN	H H
High	Low	Con.	uen-con. Con.	non-	non-con. Con.	H J
High	High) con.		Cen.		And untrin

Table 3.1: Logic Level

non-con. = conducting non-con. = nonconductay

TASK 3 B

Advantages are e.g. 1. High currents are possible; 2. Little energy is consumed while static

These advantages hold true in comparison to other types e.g. RTL logic. CMOS for example consumes lower power.